Math 531 Comprehensive Exam January 2008

Problem 1

- (a) Find an asymptotic formula for the sum $\sum_{p \le x} \frac{\log^2 p}{p^{1/2}}$, where the sum is over primes p.
- (b) Let $[a_1, a_2, \ldots, a_n]$ be the least common multiple of a_1, a_2, \ldots, a_n . Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{z^n}{[1, 2, \dots, n]}.$$

Problem 2

Suppose $S(x) = \sum_{n \le x} a_n \sim Lx$, where a_1, a_2, \ldots are real numbers and L is a nonzero real number. Consider the Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} a_n n^{-s}.$$

- (a) Show that F(s) has abscissa of convergence $\sigma_c = 1$.
- (b) Find an asymptotic formula for $\sum_{n \le x} \frac{a_n}{n}$.

Problem 3

- (a) Prove that $\tau(n^2)$ is multiplicative, where $\tau(m)$ is the number of positive divisors of m.
 - (b) Prove that

$$\sum_{n=1}^{\infty} \frac{\tau(n^2)}{n^s} = \frac{\zeta^3(s)}{\zeta(2s)} \qquad (\operatorname{Re} s > 1).$$

Hint: use the identity $\sum_{m=0}^{\infty} (2m+1)x^m = \frac{1+x}{(1-x)^2}$ for |x| < 1.

(c) Assuming the Riemann Hypothesis, describe as accurately as possible the location of the poles of the right side of the equation in (b).

Problem 4

(a) Use the multiplicative properties of the Möbius function μ to show that

$$\sum_{d^2|n} \mu(d) = egin{cases} 1 & n ext{ is squarefree} \ 0 & ext{otherwise} \end{cases}$$

(b) If n has prime factorization $n = p_1^{e_1} \cdots p_r^{e_r}$, let $\lambda(n) = (-1)^{e_1 + \cdots + e_r}$. Find an asymptotic formula for

$$\sum_{\substack{n \le x \\ \lambda(n) \ne \mu(n)}} 1.$$

Problem 5

Let χ be a real, nonprincipal character modulo k.

(a) Show that there are infinitely many primes q with $\chi(q) = 1$ and infinitely many primes q with $\chi(q) = -1$.

(b) Determine whether or not the series $\sum_{n=1}^{\infty} \frac{\chi(n)}{\sqrt{n}}$ converges or diverges.