Math 531 Comprehensive Exam January 2006

- 1. Let $f(n) = \sum_{d|n} (\log d)/d$, and let $F(s) = \sum_{n=1}^{\infty} f(n)n^{-s}$.
 - (i) Evaluate F(s) in terms of the Riemann zeta function.
- (ii) Obtain an estimate for the sums $S(x) = \sum_{n \leq x} f(n)$ with error term $O((\log x)^2)$. (This estimate will involve a constant; for full credit express this constant in terms of the Riemann zeta function.)
- 2. Without using the Prime Number Theorem (you may use Chebychev and/or Mertens type estimates), determine whether the series $\sum_{n=2}^{\infty} \Lambda(n)/(n \log n)$ converges, and obtain an estimate for the partial sums

$$S(x) = \sum_{2 \le n \le x} \frac{\Lambda(n)}{n \log n},$$

with as good an error term you can get without appealing to the PNT. (Here $\Lambda(n)$ denotes the von Mangoldt function.)

3. Let f(n) be an arithmetic function satisfying

$$S(x) = \sum_{n \le x} f(n) = Ax^{\alpha} + Bx^{\beta} + O(x^{\delta}) \quad (x \ge 1),$$

where $\alpha > \beta > \delta \ge 0$ are real numbers and A and B are non-zero real numbers. Let $F(s) = \sum_{n \ge 1} f(n) n^{-s}$ be the generating Dirichlet series for f. Find, with proof, a half-plane (as large as possible) in which F(s) is guaranteed to have a meromorphic continuation, and determine all poles (if any) of (the meromorphic continuation of) F(s) in that region, and the residues of F at those poles.

- 4. Let f(n) denote the remainder of n modulo 5 (so that $f(n) \in \{0, 1, 2, 3, 4\}$ for each n), and let $F(s) = \sum_{n=1}^{\infty} f(n) n^{-s}$ be the Dirichlet series of f.
 - (i) Express F(s) in the half-plane $\sigma > 1$ in terms of Dirichlet L-functions.
- (ii) Show that F(s) has a merophorphic continuation to the half-plane $\sigma > 0$ and find all poles (if any) of F(s) in this half-plane, and their residues.
- 5. Let $Q_{+}(x)$ (resp. $Q_{-}(x)$) denote the number of squarefree positive integers $\leq x$ that have an even (resp. odd) number of prime factors.
- (i) State an estimate involving $Q_{+}(x)$ and $Q_{-}(x)$ that is equivalent to the Prime Number Theorem. (No proof required; one or two lines of explanation, citing appropriate theorems, are sufficient.)
- (ii) Is it possible that $Q_{\pm}(x)$ satisfy the estimate $Q_{+}(x) = Q_{-}(x) + O(1)$? Explain why, or why not, citing appropriate theorems.