Math 531 Comprehensive Exam August 2006

1. Let f(n) denote the number of representations of n as a product of two coprime positive integers, i.e.,

$$f(n) = \{(a,b) \in \mathbb{N}^2 : ab = n, (a,b) = 1\}.$$

- (i) Define g by the identity f = g * d, where d is the divisor function. Determine the function g explicitly, i.e., describe the values g(n) explicitly, in terms of a well-known arithmetic function (not as a sum).
- (ii) Let $F(s) = \sum_{n=1}^{\infty} f(n)n^{-s}$. Express F(s) (a) in terms of the Riemann zeta function and (b) as an Euler product.
- 2. (i) Using only Chebyshev estimates (but not the Prime Number Theorem), show that there are infinitely many primes that contain all 10 digits $0, 1, \ldots, 9$ in their decimal representation.
- (ii) Show that there are infinitely many primes whose decimal representation *begins* with the digits 9876543210. (For this part you may use the Prime Number Theorem.)
- 3. Let f be an arithmetic function satisfying

$$\left|\sum_{n \le x} f(n)\right| \le x^{1/3}, \quad x \ge 1$$

and let $F(s) = \sum_{n=1}^{\infty} f(n)n^{-s}$ be the associated Dirichlet series.

- (i) Determine a half-plane (as large as possible, given the assumption (*)) in which F(s) converges.
- (ii) Obtain an *explicit* bound (as good as you can get) for |F(s)| in this half-plane in terms of $\sigma = \Re s$ and $t = \Im s$. (Explicit here means that the bound should be an explicit function of σ and t (such as $|F(s)| \leq 10e^{|t|}\sigma$), and not involve O's or unspecified constants.)

4. (i) Obtain an estimate for the sum

$$S(x) = \sum_{\substack{n \le x \\ n \text{ odd}}} \frac{1}{n}, \quad x \ge 1,$$

with error term O(1/x). (The estimate should not involve any unspecified constants.)

(ii) Let

$$D(x) = \sum_{\substack{n \leq x \\ n \text{ odd}}} d(n),$$

where d(n) is the divisor function. Give an estimate for D(x) with error term $O(\sqrt{x})$. As in (i), any constants arising in this estimate should be worked out explicitly. (Hint: Use Dirichlet's hyperbola method and the result of part (i).)

5. Let

$$F(s) = \sum_{n=1}^{\infty} \frac{\sin(2\pi n/3)}{n^s}.$$

- (i) Express F(s) in terms of the Riemann zeta function and/or Dirichlet L-series.
- (ii) Determine, with proof, the abscissa of absolute convergence σ_a and the abscissa of convergence σ_c of F(s).
- (iii) Show that F(s) has a meromorphic continuation to the half-plane $\sigma > 0$ and determine all its poles (if any) in this half-plane.