MATH 530 - Comprehensive Examination, May 2018

Instructions: Attempt all problems. Each question is worth 20 points.

Here is a theorem that you may wish to quote in your solutions:

Minkowski's bound: Let K/\mathbb{Q} be a finite extension of the rational numbers with degree n and let O_K be the set of algebraic integers in K and Δ the discriminant of O_K over the integers. Assume K has r embeddings into the real numbers and 2s embeddings into the complex numbers. Then every class of fractional ideals contains an ideal I in O_K that satisfies

$$|N_{K/\mathbb{Q}}(I)| \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta|^{1/2}.$$

- 1. Determine the structure of the ideal class group of $\mathbb{Q}(\sqrt{35})$.
- 2. Let $K = \mathbb{Q}(\zeta_{21})$, where $\zeta_{21} = e^{2\pi i/21}$ is a primitive 21-st root of unity.
 - (a) Give the degree $[K:\mathbb{Q}]$ of the extension K/\mathbb{Q} .
 - (b) For each of the primes p in \mathbb{Z} that ramify in K/\mathbb{Q} determine the number of distinct primes P in $\mathbb{Z}[\zeta_{21}]$ that divide p.
 - (c) For each of the primes p=2 and p=13 in \mathbb{Z} determine the number of distinct primes P in $\mathbb{Z}[\zeta_{21}]$ that divide p.
- 3. Let K be a number field and let O_K be its ring of integers. Prove that if $\alpha \in O_K$ satisfies $\log |\sigma(\alpha)| = 0$ for every field embedding $\sigma : F \hookrightarrow \mathbb{C}$, then α is a root of unity.
- 4. Let O_K be a Dedekind domain with fraction field K and let $Q \subseteq O_K$ be a nonzero prime ideal. Let L/K be a finite Galois extension and let O_L be the integral closure of O_K in L.
 - (a) Prove that $\operatorname{Gal}(L/K)$ acts transitively on the set of prime ideals $P \subset O_L$ above Q.
 - (b) Prove that if P_1 and P_2 are two primes ideals in O_L above Q, then their decomposition groups D_{P_1} and D_{P_2} are conjugate.
- 5. (a) Give an example of $d \in \mathbb{Z}$ such that d is a square in \mathbb{Q}_3 and in \mathbb{Q}_5 , but not in \mathbb{Q}_7 .
 - (b) For your example d from part (a), and for each of p = 3, 5, 7, how many ways are there to extend the p-adic absolute value on \mathbb{Q} to $\mathbb{Q}(\sqrt{d})$?