MATH 530 - Comprehensive Examination, May 2009

Instructions: Do any four of these five problems. Indicate which problem you have omitted. Each question is worth 20 points.

Here is a theorem that you may wish to quote in your solutions:

Minkowski's bound: Let K/\mathbb{Q} be a finite extension of the rational numbers with degree n and let O_K be the set of algebraic integers in K and Δ the discriminant of O_K over the integers. Assume K has r embeddings into the real numbers and 2s embeddings into the complex numbers. Then every class of fractional ideals contains an ideal I in O_K that satisfies

$$|N_{K/\mathbb{Q}}(I)| \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta|^{1/2}.$$

- 1. Let $K = \mathbb{Q}(\alpha)$, with α a root of $x^3 + x^2 + x 2$. You may use the fact that α has discriminant -139.
- a) Find an integral basis for the ring of integers O_K of K.
- b) Factor the ideals $2O_K$ and $3O_K$ into prime ideals.
- c) Show that O_K is a principal ideal domain.
- 2. Let $K = \mathbb{Q}(\zeta_7, \sqrt{2})$, with $\zeta_7 = e^{2\pi i/7}$. Let O_K be the ring of integers of K and let P|2 and Q|5 be prime ideals in O_K that lie over the rational primes p=2 and p=5, respectively.
- a) Find the decomposition and inertia fields associated to P|2.
- b) Find the decomposition and inertia fields associated to Q|5.
- c) Suppose that $p \in \mathbb{Z}$ is a rational prime. Show that the ideal pO_K is not a prime ideal of O_K .
 - 3. Let $K = \mathbb{Q}(\alpha)$, with α a root of $x^3 + x^2 + x 2$.
- a) State Dirichlet's Unit Theorem.
- b) Describe the structure of the unit group E_K of the ring of integers of K as an abstract group.
- c) Explicitly find a subgroup of finite index in the group of units E_K .

- 4. Let K be a number field with ring of integers O_K . Let L be a finite galois extension of K with group G = Gal(L/K) and with ring of integers O_L .
- a) If P is a prime ideal of O_L and $\sigma \in G$ show that $\sigma(P)$ is a prime ideal of O_L , and $P \cap K = \sigma(P) \cap K$.
- b) Let P and P' be prime ideals of O_L above the same prime ideal of O_K . Prove that there exists $\sigma \in G$ such that $\sigma(P) = P'$.
 - 5. Let $\Phi_{10}(x) \in \mathbb{Z}[x]$ be the 10th cyclotomic polynomial.
- a) Find $\Phi_{10}(x)$ explicitly.
- b) Describe the factorization of $\Phi_{10}(x)$ in $\mathbb{Q}_{11}[X]$ (where \mathbb{Q}_{11} denotes the complete field of 11-adic numbers). Give the number of irreducible factors and their degrees.