Math 530 Comprehensive Exam. May, 2007. Solve any four of the five problems.

Problem 1

You may use the fact that the discriminant of a root of $x^3 + ax + b$ is given by $-(4a^3 + 27b^2)$.

- a) Suppose that $\alpha^3 = \alpha + 1$. Let $K = \mathbb{Q}(\alpha)$ and let \mathcal{O} be the ring of integers. Find an integral basis for \mathcal{O} .
- b) Factor 5O explicitly as a product of prime ideals.
- c) Let \mathcal{P} be a prime ideal of \mathcal{O} over 2. Describe the field \mathcal{O}/\mathcal{P} (up to isomorphism).
- d) Are any primes $p \in \mathbb{Z}$ totally ramified in \mathcal{O} ?

Problem 2

Let p be an odd prime and let ζ be a primitive pth root of unity.

- a) Describe the unit group of $\mathbb{Q}(\zeta)$ as an abstract abelian group.
- b) Describe the unit group of $\mathbb{Q}(\zeta + \zeta^{-1})$ as an abstract abelian group.
- c) Assume Kummer's Lemma: If u is a unit of $\mathbb{Q}(\zeta)$ then $u/\overline{u} = \zeta^r$ for some $r \in \mathbb{Z}$ (where $\overline{}$ is complex conjugation).

Prove: any unit of $\mathbb{Q}(\zeta)$ can be written in the form $\zeta^s \epsilon_1$, where $s \in \mathbb{Z}$ and ϵ_1 is a unit of $\mathbb{Q}(\zeta + \zeta^{-1})$.

Problem 3

Let $f = x^2 + x + 1 \in R[x]$, where $R = \mathbb{Z}/49\mathbb{Z}$.

- (a) State Hensel's lemma.
- (b) Prove that f factors as a product of two linear factors in R[x].

In the next three parts you will construct a nontrivial factorization of $f \in R[x]$.

- (c) Find linear polynomials $g_1, h_1 \in R[x]$ with $f \equiv g_1 h_1 \pmod{7}$.
- (d) Find $a_1, b_1 \in R[x]$ with $a_1g_1 + b_1h_1 \equiv 1 \pmod{7}$.
- (e) Find $u_1, v_1 \in R[x]$ such that, for $g_2 = g_1 + 7u_1$ and $h_2 = h_1 + 7v_1$, we have $f \equiv g_2h_2 \pmod{49}$.

Problem 4

Let $K = \mathbb{Q}(\sqrt[3]{b})$ be a cubic number field and let L/\mathbb{Q} be the normal closure of K/\mathbb{Q} , so that $Gal(L/\mathbb{Q}) = S_3$. Let $p \in \mathbb{Z}$ be a prime which is unramified in K, and let Q be a prime of L over p.

- (a) Show that p is unramified in L.
- (b) Define the Frobenius automorphism $\phi(Q|p) \in \operatorname{Gal}(L/\mathbb{Q})$.
- (c) Show that the cycle structure of the Frobenius $\phi(Q|p) \in S_3$ depends on p but not on Q.
- (d) Describe the decomposition of p in K/\mathbb{Q} for each of the following cases: $\phi(Q|p) = (1)$, $\phi(Q|p) = (12)$, $\phi(Q|p) = (123)$.

Problem 5

Suppose that K is a number field which is Galois over $\mathbb Q$ and that $\mathcal P$ is a prime ideal of the ring of integers $\mathcal O$. Define, for $m \geq 0$, the group

$$V_m := \{ \sigma \in \operatorname{Gal}(K/\mathbb{Q}) : \sigma(\alpha) \equiv \alpha \pmod{\mathcal{P}^{m+1}} \text{ for all } \alpha \in \mathcal{O} \}.$$

- a) Suppose that $V_0 = \{id\}$. Let $p \in \mathbb{Z}$ be the prime under \mathcal{P} . What can you conclude about the decomposition of p in \mathcal{O} ?
- b) Prove that $\bigcap_{m=0}^{\infty} V_m = \{id\}$ and that $V_m = \{id\}$ for sufficiently large m.
- c) Suppose that $\pi \in \mathcal{P}$. If $\sigma \in V_{m-1}$ and $\sigma(\pi) \equiv \pi \pmod{\mathcal{P}^{m+1}}$, prove that

$$\sigma(\alpha) \equiv \alpha \pmod{\mathcal{P}^{m+1}}$$
 for all $\alpha \in \pi\mathcal{O}$