MATH 530 - Comprehensive Examination, January 2012

Instructions: Do any four of these five problems. Indicate which problem you have omitted. Each question is worth 20 points.

Here is a theorem that you may wish to quote in your solutions:

Minkowski's bound: Let K/\mathbb{Q} be a finite extension of the rational numbers with degree n and let O_K be the set of algebraic integers in K and Δ the discriminant of O_K over the integers. Assume K has r embeddings into the real numbers and 2s embeddings into the complex numbers. Then every class of fractional ideals contains an ideal I in O_K that satisfies

$$|N_{K/\mathbb{Q}}(I)| \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta|^{1/2}.$$

- 1. Determine the structure of the ideal class group of $\mathbb{Q}(\sqrt{-37})$.
- **2**. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and let O_K be the ring of integers of K.
- a) For a prime P of O_K that divides the rational prime p define the decompositon field and the inertia field.
- b) Let P|p and P'|p be distinct primes of O_K that divide the same rational prime p. Show that the decomposition fields and the inertia fields are the same for P|p and for P'|p.
- c) Find the decomposition field and the inertia field associated to a prime P|7.
- d) Find the decomposition field and the inertia field associated to a prime P|3.
 - **3**. Let $K = \mathbb{Q}(\zeta)$, with $\zeta = e^{2\pi i/24}$ a primitive 24-th root of unity.
- a) State Dirichlet's Unit Theorem.
- b) Describe the structure of the unit group E_K of the ring of integers of K as an abstract group.
- c) Explicitly describe the real quadratic subfields of K.
- d) Explicitly find a subgroup of finite index in the group of units E_K .

- 4. Let K be a number field with ring of integers O_K .
- a) Prove that there exists a constant C>0 (depending on K) such that every nonzero ideal I of O_K contains a nonzero element α with $|N_{K/\mathbb{Q}}(\alpha)| \leq C |N_{K/\mathbb{Q}}(I)|$.
- b) Deduce from a) that the class number of O_K is finite.
 - 5. Let f be the polynomial $x^4 + 4x^2 + 10 \in \mathbb{Q}[x]$.
- a) Show that f is irreducible over \mathbb{Q} .
- b) Find the degree of each irreducible factor of f in the polynomial ring $\mathbb{Q}_7[X]$. Here \mathbb{Q}_7 denotes the complete field of 7-adic numbers.