Math 530 Comprehensive Exam. January 2008 Instructions: Do four of the following five problems. Here is a theorem that you may wish to quote in your solutions: Minkowski's bound: Let K be a finite extension of the rational numbers with degree n and let O_K be the set of algebraic integers in K and Δ the discriminant of O_K over the integers. Assume K has r embeddings into the real numbers and 2s embeddings into the complex numbers. Then every class of fractional ideals contains an ideal I in O_K that satisfies $$|N_{K/\mathbb{Q}}(I)| \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta|^{1/2}.$$ # Problem 1 Determine the structure of the ideal class group of $\mathbb{Q}(\sqrt{26})$, and explicity give ideals which represent the different ideal classes. # Problem 2 - a) State Dirichlet's Unit Theorem, and explain what it says about the field $K = \mathbb{Q}(\sqrt{-3}, \sqrt{-5})$. - b) Determine a subgroup of finite index in the group of units of the ring of integers of K. #### Problem 3 Let K be a number field which is Galois over \mathbb{Q} and let \mathcal{O}_K be its ring of integers. - a) Define the inertia subgroup I_P for a prime ideal P of \mathcal{O}_K . - b) Prove that $Gal(K/\mathbb{Q})$ is generated by the groups I_P as P runs over all primes of \mathcal{O}_K . Hint: consider the field fixed by the group generated by the I_P . # Problem 4 Let $L = \mathbb{Q}(\omega_{35})$, where $\omega_{35} = e^{\frac{2\pi i}{35}}$, and let \mathcal{O}_L be the ring of integers of L. - a) Determine the structure of the Galois group $G = G(L/\mathbb{Q})$ of L over \mathbb{Q} . - b) Find all quadratic subfields of L over \mathbb{Q} . - c) Determine the ramification index e_p , the inertial degree f_p , and the number r_p of primes of \mathcal{O}_L lying over p, for each of the rational primes p = 2, 3, 7. - d) Determine the decomposition field L(p), for each of the rational primes p = 2, 3, 7. (Here L(p) = L(q|p) is independent of the prime q|p since G is abelian.) ### Problem 5 Let \mathbb{Q}_p denote the *p*-adic rational field (the completion of \mathbb{Q} at a *p*-adic valuation) and let $(\mathbb{Q}_p^*)^3 = \{a^3 : a \in \mathbb{Q}_p^*\}$ be the subgroup of units that are perfect cubes. - a) State Hensel's lemma about reducibility of polynomials over Z_p . - b) Show that $6 \in (\mathbb{Q}_7^*)^3$.