MATH 530 - Comprehensive Examination, January 2007

Instructions: Do any four of these five problems. Indicate which problem you have omitted. Each question is worth 20 points.

Here is a theorem that you may wish to quote in your solutions:

Minkowski's bound: Let K be a finite extension of the rational numbers with degree n and let R be the set of algebraic integers in K and Δ the discriminant of R over the integers. Assume K has r embeddings into the real numbers and 2s embeddings into the complex numbers. Then every class of fractional ideals contains an ideal A in R that satisfies

$$|N_{K/\mathbb{Q}}(A)| \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta|^{1/2}.$$

- 1. Let K be a finite Galois extension of $\mathbb Q$ with abelian Galois group G and ring of integers O_K .
- a) If P is a prime ideal of O_K and $\sigma \in G$ show that $\sigma(P)$ is a prime ideal of O_K , and $P \cap \mathbb{Q} = \sigma(P) \cap \mathbb{Q}$.
- b) Show that the primes P and $\sigma(P)$ have the same decomposition field.
- c) Let $K = \mathbb{Q}(\zeta_{55})$, with $\zeta_{55} = e^{2\pi i/55}$. For each of the rational primes p = 5, 11, determine the invariants e, f, r that appear in the decomposition of pO_K as a product of prime ideals in O_K .
 - 2. Let E_K be the unit group of the ring of integers of the number field K.
- a) State Dirichlet's Unit Theorem for the structure of the unit group E_K .
- b) For $K = \mathbb{Q}(\sqrt{-3}, \sqrt{-5})$, describe the structure of E_K as an abstract group.
- c) For the group of units E_K under b), explicitly find a subgroup of finite index.
- 3. Let $K = \mathbb{Q}(\sqrt{-26})$ and let R be the ring of integers of K. Show that there exist ideals I and J in R such that $2R = I^2$ and $(1 + \sqrt{-26})R = J^3$. Determine the class number of K.
- 4. Prove that for a number field K with ring of integers O_K , every nonzero prime ideal of O_K is a maximal ideal. Hint: Show that for every ideal I there exists $m \in \mathbb{Z}$ such that $mO_K \subset I \subset O_K$ and use that O_K is a free \mathbb{Z} -module of finite rank.
- 5. Show that the polynomial $f = X^4 2X + 2$ is irreducible over \mathbb{Q} . Find the degree of each irreducible factor of f in the polynomial ring $\mathbb{Q}_5[X]$. Here \mathbb{Q}_5 denotes the complete field of 5—adic numbers.