MATH 530 - Comprehensive Examination, August 2009 Instructions: Do any four of these five problems. Indicate which problem you have omitted. Each question is worth 20 points. Here is a theorem that you may wish to quote in your solutions: Minkowski's bound: Let K/\mathbb{Q} be a finite extension of the rational numbers with degree n and let O_K be the set of algebraic integers in K and Δ the discriminant of O_K over the integers. Assume K has r embeddings into the real numbers and 2s embeddings into the complex numbers. Then every class of fractional ideals contains an ideal I in O_K that satisfies $$|N_{K/\mathbb{Q}}(I)| \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta|^{1/2}.$$ - 1. Determine the structure of the ideal class group of $\mathbb{Q}(\sqrt{-35})$. - **2**. Let $K = \mathbb{Q}(\sqrt{5}, \sqrt{11})$ and let O_K be the ring of integers of K. - a) For each of the rational primes p = 3, 5, determine the invariants e, f, r that appear in the decomposition of pO_K as a product of prime ideals in O_K . - b) For each of the rational primes p=3,5, determine the decomposition field and the inertia field for K/\mathbb{Q} . - 3. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. - a) State Dirichlet's Unit Theorem. - b) Describe the structure of the unit group E_K of the ring of integers of K as an abstract group. - c) Explicitly find a subgroup of finite index in the group of units E_K . - 4. Let K be a finite dimensional extension field of the rational numbers with $K \neq \mathbb{Q}$. Use the discriminant to show that there is a rational prime that ramifies in K. - 5. Let \mathbb{Q}_p denote the field of p-adic rational numbers and let \mathbb{Z}_p be the subring of p-adic integers. - a) State Hensel's Lemma about the factorization of polynomials in the ring $\mathbf{Z}_p[X]$. - b) Show that the field \mathbb{Q}_p contains a primitive p-1-root of unity.