Math 525, Comprehensive Exam, May 2015

1. Let X be the CW complex with one 0-cell, two 1-cells, oriented and labeled a and b, and two 2-cells, attached to the 1-skeleton X^1 by the maps $\phi_1, \phi_2 : \partial D^2 \to X^{(1)}$, where ϕ_1 traces the loop a^2b^2 and ϕ_2 traces the loop abab.

- **a.** Write down a presentation for $\pi_1(X)$.
- **b.** Calculate the singular homology groups $H_n(X)$ for all $n \geq 0$.
- c. Does there exist $1 < d < \infty$ such that X has a connected covering space with d sheets which is normal? Does it have such a covering space which is non-normal? Explain your answer in both cases.
- 2. Let $n \ge 1$ be an integer, and A be an $n \times n$ matrix with positive entries. Prove that A has a positive eigenvalue $\lambda > 0$ with an eigenvector \mathbf{v} having all positive entries. Hint. The linear map defined by A restricts to a map in the positive orthant $A: \mathbb{R}^n_{\ge 0} \to \mathbb{R}^n_{\ge 0}$ and $A\mathbf{v} \ne \mathbf{0}$ for every $\mathbf{v} \in \mathbb{R}^n_{\ge 0} \setminus \{\mathbf{0}\}$.
- 3. Consider the standard embedding of the 3-sphere S^3 in \mathbb{R}^4 :

$$S^{3} = \{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2} + y^{2} + z^{2} + w^{2} = 1\},\$$

and let

$$W = \{(x,y,0,0) \mid x,y \in \mathbb{R}\} \cup \{(0,0,z,w) \mid z,w \in \mathbb{R}\}.$$

Setting $L = W \cap S^3$, calculate the relative homology groups $H_n(S^3, L)$ for all $n \ge 0$.