Comprehensive Exam in Topology

University of Illinois, January 2008

1.

Let I = [0, 1]. Let X be a space and let p and q be two points of X.

a) Give an example of a connected space X and points p and q such that

$$\pi_1(X;p) \ncong \pi_1(X,q).$$

b) Show on the other hand that if there is a path $\gamma:I\to X$ with $\gamma(0)=p$ and $\gamma(1)=q$, then there is an isomorphism

$$c_{\gamma}:\pi_1(X;p)\cong \pi_1(X;q).$$

c) Show that if X is path-connected and $\pi_1(X; p)$ is an it abelian group, then the isomorphism in b) does not depend on the choice of γ : if γ' is another path is X with $\gamma'(0) = p$ and $\gamma'(1) = q$, then

$$c_{\gamma'} = c_{\gamma} : \pi_1(X; p) \longrightarrow \pi_1(X; q).$$

2. Show that if f is a continuous map from S^2 to S^2 such that f(-x) = f(x) for all x, then $H_2(f) = 0$.

3.

Let X be a space and $U \subseteq X$ open such that $U \cong \mathbb{R}^k$. Show that for $x \in U$,

$$H_n(X, X - \{x\}) \cong \tilde{H}_n(S^k)$$

for all n.

4.

- a) Let $f:(X,A)\longrightarrow (Y,B)$ be a map such that both $f:X\longrightarrow Y$ and the restriction $f:A\longrightarrow B$ are homotopy equivalences. Show that $f_*:H_n(X,A)\longrightarrow H_n(Y,B)$ is an isomorphism for all n.
- b) Let $I=[0,1], S^0=\{0,1\}$, and $B=[0,\frac{1}{2})(\frac{1}{2},1]$. The identity map induces a map of pairs $(I,S^0)\longrightarrow (I,B)$ which satisfies the conditions of a). Prove that the induced map $H_1(I/S^0)\longrightarrow H_1(I/B)$ is not an isomorphism.
- 5. Let S^2, D_1 and D_2 be the subspaces of \mathbb{R}^3 homeomorphic to a two sphere and two lines determined by

$$S^{2} = \{(x_{1}, x_{2}, x_{3}) \mid \sum_{i=1}^{3} x_{i}^{2} = 1\}$$

$$D_{1} = \{(x_{1}, x_{2}, x_{3}) \mid -1 \leq x_{1} \leq 1, x_{2} = x_{3} = 0\}$$

$$D_{2} = \{(x_{1}, x_{2}, x_{3}) \mid -1 \leq x_{2} \leq 1, x_{1} = x_{3} = 0\}$$

Compute the homology of the subspace $X = S^2 \cup D_1 \cup D_2$.