COMPREHENSIVE EXAM IN TOPOLOGY

MAY 2007

1. For $n \geq 0$ let S^n be the *n*-sphere

$$S^{n} = \{x \in \mathbb{R}^{n+1} | x_{1}^{2} + \dots + x_{n+1}^{2} = 1\}.$$

A non-vanishing vector field on S^n is a continuous function

$$v: S^n \to S^n$$

such that, for all $p \in S^n$, $v(p) \cdot p = 0$ (dot product in \mathbb{R}^{n+1}). The antipodal map of S^n is the map

$$a(p) = -p$$

(scalar multiplication by -1 in \mathbb{R}^{n+1}).

- (1) Show that if S^n admits a non-vanishing vector field, then a is homotopic to the identity map.
- (2) For which n does S^n have a nowhere vanishing vector field? Justify your answer.

2. If $f: S^1 \to S^1$ is a map, then the mapping torus of f is the space

$$T_f = \frac{I \times I}{(0,y) \sim (1,y); (x,0) \sim (f(x),1)}.$$

Suppose that f is the map $f(z) = z^n$. Calculate $H_*(T_f; \mathbb{Z})$.

- 3. Let K be the Klein bottle. Calculate $\pi_1 K$.
- 4. Let

$$0 \to A_{\star} \xrightarrow{f} B_{\star} \xrightarrow{g} C_{\star} \to 0$$

be a short exact sequence of chain complexes. Construct the going-around map

$$\delta: H_n(C) \to H_{n-1}(A),$$

and show that

$$H_n(B) \xrightarrow{H_n g} H_n(C) \xrightarrow{\delta} H_{n-1}(A)$$

is exact.