Comprehensive exam in Topology (525) January, 2012.

- 1. (25 points) Let $X = S^1 \vee S^1$ be the one-point union of two circles. Label the circles "a" and "b".
 - (a) Classify all 2-fold covers $p: Y \to X$ up to isomorphism of cover. (Do not require Y to be connected.)
 - (b) Let $K = X \cup_{\phi} e^2$ be the space obtained by gluing a 2-disk to X along its boundary along the map $\phi \colon S^1 \to X$ which is the loop $a \cdot b \cdot a^{-1}$ (the composite of the loop a followed by the loop b followed by the reverse of a). Which covers $p \colon Y \to X$ in part (a) are the restriction of some two fold cover $L \to K$ to X?
- 2. (25 points) Let $X \subset \mathbb{R}^3$ be the space which is the union of the unit sphere $S^2 = \{x \mid |x| = 1\}$ and the line segment $L = \{(0,0,t) \mid |t| \leq 1\}$ connecting north and south poles. Let $x_0 = (0,0,0)$. Describe the group $\pi_1(X,x_0)$ using generators and relations.
- 3. (25 points) Let A be a non-empty space. The *cone* on A is the quotient space $CA = A \times I/A \times 0$ (i.e., all points in the subspace $A \times 0$ are identified with each other). Write $* \in CA$ for the point which is the image of $A \times 0$. We regard $A \subset CA$ by the inclusion $i: A \to CA$ defined by i(a) = [(a, 1)].
 - (a) Show that CA is contractible.
 - (b) Use Eilenberg-Steenrod axioms for singular homology to show that $H_q(CA, A) \approx \bar{H}_{q-1}A$ for all q.
- 4. (25 points) Let $X = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \cup \{(x,0) \in \mathbb{R}^2 \mid x^2 \leq 1\}$ (so X is the union of a cicle with a diameter line-segment). Let Y be the quotient of $X \times [0,1]$ obtained by identifying $X \times 0$ and $X \times 1$ with a 1/2-twist, so that (x,y,0) is identified with (-x,-y,1).
 - (a) Describe a CW-structure for Y.
 - (b) Compute the Euler characteristic of Y.
 - (c) Compute the singular homology groups of Y.