Comprehensive Exam in Topology

University of Illinois, January 2008

- 1. For each of the following, either give explicit examples or indicate why none exists. Justify your answer.
- a) X and Y path connected spaces and $f: X \to Y$ a a continuous map such that $\pi_1(f)$ is an isomorphism but $H_2(f; \mathbb{Z})$ is not.
- b) X and Y path connected spaces and $f: X \to Y$ a a continuous map such that $H_1(f; \mathbb{Z})$ is an isomorphism but $\pi_1(f)$ is not.
- c) X and Y path connected spaces and $f: X \to Y$ a a continuous map such that $\pi_1(f)$ is an isomorphism but $H_1(f; \mathbb{Z})$ is not.
- d) A continuous map from S^2 to itself that has no fixed points.
- e) A continuous map of D^3 to itself that has no fixed points.

2.

Let X be a path-connected, locally path-connected and semilocally simply-connected space with a universal cover $\tilde{X} \stackrel{p}{\longrightarrow} X$. Prove that if \tilde{X} is compact than $\pi_1(X)$ is finite.

3.

Compute $H_*(X; \mathbf{Z})$ if X is the (reduced) double-suspension of $\mathbb{R}P^5$. That is, given a point $r_0 \in \mathbb{R}P^5$ and $s_0 \in S^2$, we take

$$X = S^2 \wedge \mathbb{R}P^5 = \frac{\mathbb{R}P^5 \times S^2}{(r, s_0) \sim (r_0, s_0) \sim (s_0, r)}.$$

4. Prove that if Y is a CW complex and $H_4(Y; \mathbf{Z}) \neq 0$ then Y must have a cell in dimension 4. Prove that if X a CW-complex and $H_4(X) = \mathbb{Z}/6\mathbb{Z}$ then X must have a cell in dimension 5 as well as a cell in dimension 4.