## Comprehensive Exam in Topology University of Illinois, August 2010

- 1. (25 points) Let X be the space obtained by gluing together a Möbius band B and a torus  $T = S^1 \times S^1$ , by identifying the boundary circle  $C \subset B$  of the Möbius band with the circle  $C' = S^1 \times \{x_0\}$  inside the torus. Let  $G = \pi_1(X)$ .
  - (a) Describe G in terms of generators and relations.
  - (b) Is the group G abelian?
  - (c) Compute  $H_1(X)$ .
- 2. (25 points) Let  $S^2 \subset \mathbb{R}^3$  be the unit sphere; let  $E = S^2 \cap (\mathbb{R}^2 \times \{0\})$  be the equitorial circle. Let  $Y = S^2/\sim$ , where we identify  $x \sim -x$  for each  $x \in E$ . Show that Y can be given the structure of a CW-complex, being careful to describe the cells and attaching maps. Use this to compute  $H_*Y$ .
- 3. (25 points) Prove the following simple version of invariance of dimension: if m and n are positive integers such that  $m \neq n$ , then  $\mathbb{R}^m$  is not homeomorphic to  $\mathbb{R}^n$ . Do not invoke invariance of dimension or domain in your proof.
- 4. (25 points) Show that if a path connected, locally path connected space X has finite fundamental group, then every map  $X \to S^1$  is null homotopic. (Hint: use the covering map  $\mathbb{R} \to S^1$ .)