COMPREHENSIVE EXAM IN TOPOLOGY

AUGUST 2007

- 1. Let $f:A\to X$ be a map. Recall that a retraction of f is a map $g:X\to A$ such that $gf=1_A$.
 - (1) Is there a map $f: S^2 \to S^3$ which admits a retraction? If yes, give an example; if not, prove it.
 - (2) Is there a map $f: S^1 \to \mathbb{R}P^2$ which admits a retraction? If yes, give an example; if not, prove it.
- 2. Let $P = \mathbb{R}P^2$ be the real projective space of lines through the origin in \mathbb{R}^3 . Classify the two-sheeted covering spaces of $P \times P$. Justify your answer.
- 3. Let n > 1 be a natural number, and let A be the abelian group $A = \mathbb{Z}/n\mathbb{Z}$. Let k > 0 be a natural number. Is there a space X with

$$H_0(X; \mathbf{Z}) = \mathbf{Z}$$

$$H_k(X; \mathbb{Z}) \cong A$$

$$H_p(X; \mathbb{Z}) = 0$$

$$p \neq 0, k$$
.

If yes, construct it. If no, explain why not.

4. Let T be the torus, and K the Klein bottle. Let X be the space obtained from T and K by cutting a disk out of each, and then identifying the boundary circles. (See the figure). Calculate $H_*(X; \mathbb{Z})$.

As usual, the neck of the Klein bottle does not actually poss through the side, but must appear to when drawn in R2 or R3.