COMPREHENSIVE EXAM IN TOPOLOGY

AUGUST 2006

- 1. For $g \ge 0$ let M^g be a 2-sphere with g handles, that is, M^g is homeomorphic to the surface of genus g. Suppose that all the handles lie in the northern hemisphere. Let R^g be the space obtained from M^g by removing a single point, say the south pole.
 - (1) Show that

$$H_0(R^g; \mathbb{Z}) \cong \mathbb{Z}$$

$$H_1(R^g; \mathbb{Z}) \cong \mathbb{Z}^{2g}$$

$$H_{k>1}(R^g; \mathbb{Z}) = 0.$$
(1)

(2) Show that the image under the Hurewicz homomorphism

$$\pi_1(R^g;p) \to H_1(R^g;\mathbb{Z})$$

of the equator between the north and south poles is zero. p can be any point on the equator.

- (3) Calculate $H_*(M^g; \mathbb{Z})$.
- 2. Prove that, if n > k, then \mathbb{R}^n is not homeomorphic to \mathbb{R}^k .
- 3. Let I = [0, 1]. Let X be a space, and let p and q be two points of X.
 - (1) Give an example of a connected space X and points p and q such that

$$\pi_1(X;p) \ncong \pi_1(X;q).$$

(2) Show on the other hand that if there is a path $\gamma: I \to X$ with $\gamma(0) = p$ and $\gamma(1) = q$, then there is an isomorphism

$$c_{\gamma}: \pi_1(X; p) \cong \pi_1(X; q). \tag{2}$$

(3) Show that if X is path-connected and $\pi_1(X; p)$ is an abelian group, then the isomorphism (2) does not depend on the choice of γ : if γ' is another path in X with $\gamma'(0) = p$ and $\gamma'(1) = q$, then

$$c_{\gamma'} = c_{\gamma} : \pi_1(X; p) \longrightarrow \pi_1(X; q).$$

4. Let D be a closed 2-dimensional disk with boundary circle C. Let C' be another circle, and let $f: C \to C'$ be a map of degree n. Let X be the identification space

$$X = \frac{D \coprod C'}{C \ni c \sim f(c) \in C'}.$$

- (1) Calculate $\pi_1(X;0)$, where 0 is the image in X of the center of D.
- (2) Calculate $H_*(X; \mathbb{Z})$.