Comprehensive Exam: Differentiable Manifolds May 2009

Problem 1

Consider the subset of \mathbb{R}^4 satisfying the following two equations

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 4$$
 and $x_1 x_2 x_3 = 1$.

Prove that this is a manifold. What is its dimension?

Problem 2

Consider the following two 1-parameter families of maps

$$\phi_t(x, y, z) = (e^t x, y + t, z + t)$$

and

$$\psi_t(x, y, z) = (e^t x + t, y, z).$$

- (a) Prove that ϕ_t defines a flow, but that ψ_t does not.
- (b) Find the vector field ξ that generates ϕ_t .
- (c) Set $\omega = z dx + y^2 dy + x dz$ and compute $L_{\xi}\omega$.

Problem 3

Let S^2 denote the unit sphere in \mathbb{R}^3 defined by

$$x^2 + y^2 + z^2 = 1$$

given the standard orientation. That is, $\{\partial/\partial y\,,\,\partial/\partial z\}$ is positively oriented at (1,0,0). Let α be the 2-form defined by

$$\alpha = (3x^2\cos(y) + e^{xy})\,dx \wedge dy + 17x^3\,dx \wedge dz + (x + yz^5 + \sin(z))\,dy \wedge dz.$$

Compute

$$\int_{S^2} \alpha$$