Differential Geometry Comprehensive Exam, May 2007

1. a. Compute the exterior derivative of the 2-form

$$\phi = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} (xdy \wedge dz + ydz \wedge dx + zdx \wedge dy)$$

- b. Fact: $\int_{S^2} \phi = 4\pi$ where $S^2 = \{(x,y,z) \mid x^2 + y^2 + z^2 = 1\}$ oriented with the outward normal. Does this and the result of the computation of part (a) contradict Stokes' theorem? Explain.
- c. What is $\int_{\Sigma} \phi$ where $\Sigma = \{(x,y,z) \mid \frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{25} = 1\}$ oriented with outward normal?
- **2.** a. Let $f:V_1\to W$ and $g:V_2\to W$ be linear maps of finite dimensional vector spaces. Prove that if f is onto then

$$(f(V_1) \oplus 0) + (0 \oplus g(V_2)) + \Delta_W = W \oplus W$$

where Δ_W is the diagonal: $\Delta_W = \{(w_1, w_2) \in W \oplus W \mid w \in W\}.$

b. Suppose $f:N_1\to M$ and $g:N_2\to M$ are smooth maps between manifolds. Prove that if f is a submersion then

$$Z = \{(x,y) \in N_1 \times N_2 \mid f(x_1) = g(x_2)\}$$

is a submanifold of $N_1 \times N_2$. Hint: part (a) is relevant.

- 3. Consider the flow $\phi_t(x, y, z) = (e^t x, e^{2t} y, e^{-2t} z)$ on \mathbb{R}^3 .
- a. Find the vector field X that generates the flow.
- b. Compute the Lie derivative $L_X(dx \wedge dy \wedge dz)$.
- c. Find a 2-form σ so that $L_X(dx \wedge dy \wedge dz) = d\sigma$.