———- - - ——{a) Preve that SLy{R)-is-a-smooth submanifold of Ms(R):
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Problem 1
The space of 2 x 2—matrices with real entries My (R) is naturally diffeomorphically

to R* by the diffeomorphism
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SL2(]R)={<: 3}) ::cw—zy:l}
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(b) Prove that the vector field
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on M2(R) is tangent to SLa(R).

Problem 2
Recall that a function f : R3 — R is called harmonic if
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and that the gradient of f is given by
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Prove that f is harmonic if and only if
va(dzl Adzy Adzg) =0.
Here L¢(w) is the Lie derivative of the form w with respect to the vector field £
Problem 8.

Let M be a compact oriented smooth n—manifold with boundary M = N;UN,
given the boundary orientation. Let o be an n — 1-form on M. Suppose
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Explain.



