COMPREHENSIVE EXAM IN GEOMETRY, January 2006

- 1. In this problem, ω is a 1-form on \mathbb{R}^3 which is not 0 at the origin O.
- (a) Suppose there are two smooth functions f and g defined on a neighborhood V of O with $f(O) \neq 0$, such that $\omega = fdg$ on V. Show there is a 1-form θ on a neighborhood of O such that $d\omega = \theta \wedge \omega$.
 - (b) If $\omega = dz ydx dy$, do f and g as in part (a) exist? Prove your claim.
- 2. In the standard coordinates (x, y) on the plane, consider the vectorfield $V = \partial_x + y^3 \partial_y$.
 - (a) Compute the integral curve of V through an arbitrary initial point (x_0, y_0) .
- (b) Find the set of initial points (x_0, y_0) for which the flow along V exists for time t = 1.
- 3. Prove that an n-dimensional manifold is orientable (in the sense of carrying an oriented atlas) if and only if it carries a global nowhere vanishing n-form.
- 4. Let ∇ be the Riemannian connection on an *n*-dimensional manifold N. Let M be a hypersurface in N with unit normal field U.
- (a) For any vectorfield X tangent to M, set $S(X) = \nabla_X U$. Show S(X) is a vectorfield tangent to M.
 - (b) Show S determines a linear transformation $S_p: T_pM \to T_pM$, for any $p \in M$.