Comprehensive Exam: Math 518 January 2018

Problem 1 (30 points) Given the following objects

•
$$X = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + x \frac{\partial}{\partial z} \in \mathfrak{X}(\mathbb{R}^3)$$

•
$$Y = 2x \frac{\partial}{\partial z} \in \mathfrak{X}(\mathbb{R}^3)$$

•
$$\alpha = ydx + dz \in \Omega^1(\mathbb{R}^3)$$

•
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, given by $f(x, y, z) = x^2 + 2z$

•
$$F: \mathbb{R}^2 \to \mathbb{R}^3$$
, given by $F(u, v) = (e^u, e^u \sin v, u^2 + v^2)$

•
$$\gamma: [0, 2\pi] \to \mathbb{R}^3$$
, given by $\gamma(t) = (\sin t, \cos t, \sin t)$

compute the following quantities:

a. the 1-parameter group of diffeomorphisms (flow) $\phi_t \colon \mathbb{R}^3 \to \mathbb{R}^3$ that corresponds to the vector field X

b.
$$XY(f)$$

c.
$$\alpha \wedge d\alpha$$

d.
$$\mathcal{L}_{Y}\alpha$$

e.
$$F^*d\alpha$$

f.
$$\int_{\gamma} \alpha$$
.

Problem 2 (15 points)

a. Give an example of two smooth maps G and H such that: (i) H has critical points, (ii) the composition $G \circ H$ is defined, and (iii) the map $G \circ H$ has no critical points.

b. Find all values of k for which the set

$$M_k = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1^2 + x_1^3 - x_2^2 + x_3 x_4 = k\}$$

is an embedded submanifold of \mathbb{R}^4 . Are the sets M_k compact?

Problem 3 (15 points) Consider the following 2-form on \mathbb{R}^3

$$\omega = \frac{z^2}{4} dy \wedge dz - y dx \wedge dz + x \sin(y^3) dx \wedge dy.$$

For R > 0, let $S^2(R)$ denote the unit sphere in \mathbb{R}^3 defined by

$$x^2 + y^2 + z^2 = R^2$$

and equipped with its standard orientation as the boundary of $\bar{B}^3(R)$, the closed ball of radius R. Compute

$$\int_{S^2(2)} \omega - \int_{S^2(1)} (\omega + df)$$

where f is the function from Problem 1.