Comprehensive exam Math 518, January 2019.

Name:

(1) Let M be a connected smooth manifold and let $p, q \in M$. Prove that there is a diffeomorphism $F: M \longrightarrow M$ such that F(p) = q.

(2) In \mathbb{R}^3 , with coordinates (x, y, z), let

$$V = z \partial_x - z \partial_y$$
, and

 $\omega = x \, dy \wedge dz + x \, dx \wedge dz + z \, dx \wedge dy.$

Compute the following:

(a) $i_V \omega$, (b) $d\omega$, (c) $\mathcal{L}_V \omega$, (d) $\Phi^* \omega$ where $\Phi : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ is the map $(s,t) \mapsto (s+t,s-t,t)$.

(3) In \mathbb{R}^3 , with coordinates (x,y,z), let $V,W\in\mathcal{C}^\infty(\mathbb{R}^3,T\mathbb{R}^3)$ be the vector fields given by

$$V = \frac{\partial}{\partial x} + yz\frac{\partial}{\partial z}, \quad W = \frac{\partial}{\partial y}.$$

Let $E \subseteq T\mathbb{R}^3$ be the sub-bundle spanned by $\{V, W\}$.

(a) Is there an integral submanifold of E through an arbitrary point of \mathbb{R}^3 ?

(b) Find an integral submanifold of E passing through the origin.

(4) Let $\mathcal{U} \subseteq \mathbb{R}^3$ be an open subset with smooth boundary Σ , each oriented with the induced orientation. Suppose $\int_{\mathcal{U}} dx \ dy \ dz = \operatorname{Vol}(\mathcal{U}) =$ V, evaluate

$$\int_{\Sigma} e^{\cos(x+y^2)} dx \wedge dy + (x^2z + xz + z^3) dx \wedge dz + 2z dy \wedge dx$$