Comprehensive Exam Math 518, January 2016

(1) Consider the following vector field on \mathbb{R}^4 ,

$$X = \cos x_4 \frac{\partial}{\partial x_3} + \sin x_2 \frac{\partial}{\partial x_1}.$$

Compute the Lie derivative

$$\mathcal{L}_X(x_1dx_1 \wedge dx_2 + x_3dx_3 \wedge dx_4).$$

- (2) Let M be an orientable manifold and let N be an embedded submanifold of M of codimension one. Suppose there exists a vector field $X \in \Gamma(TM)$ such that $X(n) \notin T_nN$ for all $n \in N$. Prove that N is orientable.
- (3) Consider the function $f: \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x_1,\ldots,x_n) = \sum_{i=1}^n x_i^5.$$

Prove that

$$M = \{ x \in S^{n-1} \mid f(x) = 0 \}$$

is an embedded submanifold of the unit sphere S^{n-1} .

(4) Suppose that $\alpha \in \Omega^{n-1}(\mathbb{R}^n \setminus \{0\})$ is a closed form and that $\int_{S^{n-1}} \alpha \neq 0$. Prove that there does not exist a form $\beta \in \Omega^{n-1}(\mathbb{R}^n)$ such that $\beta|_{\mathbb{R}^n \setminus \{0\}} = \alpha$.