Comprehensive exam

Math 518, January, 2015

1. Consider the function $F: \mathbb{R}^4 \to \mathbb{R}^2$ given by

$$F(x_1, x_2, x_3, x_4) = (x_1^2 + x_2^2, x_3^2 + x_4^2).$$

(a) Prove that (1,1) is a regular value and hence $X = F^{-1}(1,1)$ is a submanifold of \mathbb{R}^4 . What is its dimension?

Let $i: X \to \mathbb{R}^4$ denote the inclusion and let

$$\alpha = -x_2 dx_1 + x_1 dx_2 - x_4 dx_3 + x_3 dx_4.$$

- (b) Prove that $i^*\alpha$ is closed; that is, prove $d(i^*\alpha) = 0$.
- (c) Prove that $i^*\alpha$ is not exact; that is, prove that $i^*\alpha \neq df$ for any smooth function $f: X \to \mathbb{R}$. *Hint:* Consider $X \cap V$ where V is the plane $x_3 = x_4 = 0$.
- 2. Suppose M is a smooth n-manifold oriented by a nowhere vanishing n-form ω . The ω -divergence of a smooth vector field ξ on M is defined to be the function $\operatorname{div}(\xi)$ such that

$$\mathcal{L}_{\xi}(\omega) = \operatorname{div}(\xi)\omega.$$

where $\mathcal{L}_{\xi}(\omega)$ is the Lie derivative of ω with respect to ξ .

- (a) Prove that the equation above well-defines $div(\xi)$ as a smooth function.
- (b) Prove that on \mathbb{R}^3 with volume form $\omega = dx \wedge dy \wedge dz$, the ω -divergence of a smooth vector field $\xi = P \frac{\partial}{\partial x} + Q \frac{\partial}{\partial y} + R \frac{\partial}{\partial z}$ is given by

$$\operatorname{div}(\xi) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

Emergency backup: If you cannot prove this for an arbitrary vector field, prove it for the vector field generated by the flow

$$\varphi_t(x, y, z) = (\cos(t)x + \sin(t)y, -\sin(t)x + \cos(t)y, e^t z).$$

3. Let S_R^2 be the sphere of radius R centered at the origin in \mathbb{R}^3 . Let $i: S_R^2 \to \mathbb{R}^3$ be inclusion and set

$$\beta = x \, dy \wedge dz - y \, dx \wedge dz + \sin(x) \, dx \wedge dy.$$

Choose an orientation, and evaluate $\int_{S_R^2} i^* \beta$.