- Math 518 - Fall 2013 -Differentiable Manifolds I

Comprehensive Exam

(January 2014)

1. On \mathbb{R}^3 with coordinates (x, y, z) consider the vector fields:

$$V = \frac{\partial}{\partial y}, \quad W = e^{-y} \frac{\partial}{\partial x} + \frac{\partial}{\partial z}$$

Is there any 2-dimensional submanifold $N \hookrightarrow \mathbb{R}^3$ such that:

$$T_x N = \langle V|_x, W|_x \rangle, \quad \forall x \in N?$$

Justify your answer.

2. In $\mathbb{T}^3 = \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ with angle coordinates $(\theta_1, \theta_2, \theta_3)$, let $X = \sin \theta_1 \frac{\partial}{\partial \theta_3}$ and $\omega = \cos \theta_2 d\theta_1 \wedge d\theta_3 + \sin \theta_1 d\theta_2 \wedge d\theta_3$. Compute the following:

- (a) $i_X \omega$; (b) $d\omega$; (c) $\mathcal{L}_X \omega$.
- 3. Let M be a 8-dimensional compact manifold without boundary. Let $\omega \in \Omega^4(M)$ be a differential form and assume that $\omega \wedge \omega$ is a volume form. Show that there is no 3-form $\alpha \in \Omega^3(M)$ such that $\omega = \mathrm{d}\alpha$. HINT: Observe that if $\omega = \mathrm{d}\alpha$ then $\omega \wedge \omega = \mathrm{d}(\alpha \wedge \omega)$.
 - 4. Let $n \ge 1$. Show that:

$$N = \{ [x_0 : x_1 : \dots : x_n] \in \mathbb{RP}^n : x_0^3 + \dots + x_n^3 = 0 \}$$

is a submanifold of the real projective space \mathbb{RP}^n and compute its dimension.