Differential Geometry Comprehensive Exam, January 2012

1. Let $D \subset \mathbb{R}^3$ be a compact domain with smooth boundary Σ , which is given the induced orientation. Suppose $\int_D 1 \, dx \, dy \, dz = V$ (i.e., the volume of D is V). What is

$$\int_{\Sigma} e^{\cos(x+y^2)} dx \wedge dy + (x^2z + xz + z^3) dx \wedge dz + 2z dy \wedge dx?$$

Explain.

Solution. Set

$$\omega = e^{\cos(x+y^2)} dx \wedge dy + (x^2z + xz + z^3) dx \wedge dz + 2z dy \wedge dx.$$

Then

$$d\omega = 2dz \wedge dy \wedge dx = -2dx \wedge dy \wedge dz.$$

By Stokes' Theorem

$$\int_{\Sigma} \omega = \int_{D} d\omega = \int_{D} -2dx \wedge dy \wedge dz = -2V.$$

2. a. Prove that 6 is a regular value of the function $f: \mathbb{R}^3 \to \mathbb{R}$ which is given by $f(x,y,z)=2x^2+3y^2+z^2$.

Solution. We first observe that

$$df_{(x,y,z)} = 4xdx + 6ydy + 2zdz = 0 \Leftrightarrow x = y = z = 0.$$

Then since $f(0,0,0)=0\neq 6$, the derivative $df_{(x,y,z)}$ has rank one for every $(x,y,z)\in f^{-1}(6)$ and so 6 is a regular value.

b. Explain why $f^{-1}(6)$ is a submanifold of \mathbb{R}^3 . That is, state the relevant theorem.

Solution. The Regular Value Theorem states that the preimage of a regular value is a submanifold. Since 6 is a regular value of f, it follows that $f^{-1}(6)$ is a submanifold.

c. If $f: X \to Y$ is a smooth map of manifolds and $y \in Y$ is a regular value, prove that $T_x(f^{-1}(y)) = \ker df_x$ for any $x \in f^{-1}(y)$.

Solution. The RVT further states that $f^{-1}(y)$ has dimension equal to $\dim(X) - \dim(Y)$. Therefore, it suffices to show that $T_x(f^{-1}(y)) \subset \ker df_x$ for any $x \in f^{-1}(y)$. For this we observe that given a tangent

vector $v \in T_x(f^{-1}(y))$ there is a curve $\gamma: (\epsilon, \epsilon) \to f^{-1}(y)$ with $\gamma(0) = x$ and $\dot{\gamma}(0) = v$. Then the chain rule implies

$$df_x(v) = df_x(\dot{\gamma}(0)) = df_x \circ d\gamma_0(1) = d(f \circ \gamma)_0(1) = 0$$

where the last equality comes from the fact that $f \circ \gamma$ is constant equal to y.

3. a. Prove that $\phi_t(x,y,z)=(x,e^{2t}y,e^{-3t}z)$ defines a flow on \mathbb{R}^3 .

Solution. We calculate

$$\phi_0(x, y, z) = (x, e^0 y, e^0 z) = (x, y, z)$$

and

$$\phi_{s+t}(x, y, z) = (x, e^{2(s+t)}y, e^{-3(s+t)}z)
= (x, e^{2s}(e^{2t}y), e^{-3s}(e^{-3t}z))
= \phi_s(x, e^{2t}y, e^{-3t}z)
= \phi_s(\phi_t(x, y, z))
= \phi_s \circ \phi_t(x, y, z).$$

So ϕ_0 is the identity and $\phi_{s+t} = \phi_s \circ \phi_t$ and hence ϕ is a flow.

b. Find the vector field X that generates the flow.

Solution. We differentiate to find the vector field

$$X = \frac{d}{dt}\Big|_{t=0} \phi_t(x, y, z) = (0, 2e^{2\cdot 0}y, -3e^{-3\cdot 0}z) = (0, 2y, -3z).$$