Comprehensive Exam: Differentiable Manifolds January 2010

Problem 1

Consider the function $F \colon \mathbb{R}^3 \to \mathbb{R}$ given by

$$F(x, y, z) = x^2y + yz + z^2.$$

- (a) Find all the regular points of the map F.
- (b) Show that the equation F(x, y, z) = 1 defines a smooth submanifold M of \mathbb{R}^3 .
- (c) Let $\mathbf{x} = (x_0, y_0, z_0)$ be a point on M. Determine the equation(s) which define the tangent space $T_{\mathbf{x}}M$ as a linear subspace of $T_{\mathbf{x}}\mathbb{R}^3$.
- (d) Let π be the projection map from M to the xz-plane. Find all the points of M at which π is not regular.

Problem 2

- (a) Define a vector field V on \mathbb{R}^2 whose time one flow maps the origin to the point $(a,b)\in\mathbb{R}^2$.
- (b) Let p and q be points of a smooth connected manifold M. Prove that there is a diffeomorphism $F: M \to M$ such that F(p) = q.

Problem 3

Let M be a compact, oriented and connected n-dimensional manifold with boundary, ∂M . Let $i : \partial M \to M$ be inclusion. For a k-form α on M and an (n-k-1)-form β such that $i^*\beta = 0$, show that

$$\int_{M} d\alpha \wedge \beta = (-1)^{k+1} \int_{M} \alpha \wedge d\beta.$$