Differential Geometry Comprehensive Exam, August 2012

- 1. Let σ be a closed form on a manifold M and X a vector field on M. Prove that the Lie derivative of σ with respect to X is exact.
- 2. Consider the closed ball

$$D := \{ x \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1 \}$$

with the standard orientation given by the form $\mu := dx_1 \wedge \ldots \wedge dx_n$. The form μ induces an orientation on the boundary ∂D . Write down the form ν on the boundary ∂D that represents this orientation. Prove that ν is indeed nowhere zero..

- 3. Show that an *m*-dimensional oriented closed manifold (i.e., compact and without boundary) carries a closed *m*-form which is not exact.
- 4. Consider the flow in \mathbb{R}^3 given by

$$\varphi_t(x, y, z) = (e^t x, y + t, e^{-2t} z).$$

- a. Compute the vector field X which generates the flow.
- **b.** Compute the Lie derivative $L_X(dx \wedge dy)$.