Comprehensive Exam: Differentiable Manifolds August 2011

Problem 1 (15 points) Show that the subset

$$\{(x,y) \in \mathbb{R}^2 \mid x^3 + xy + y^3 = 1\}$$

is a submanifold of R².

Problem 2 (35 points)

(a) Let x, y, z be the standard coordinate functions on \mathbb{R}^3 . Consider the vector fields

$$X = x \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + 2 \frac{\partial}{\partial z},$$

$$Y = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$$

$$Y = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$$

and the 2-form

$$\omega = (x-y)dx \wedge dy + (x+y+z)dy \wedge dz$$

on \mathbb{R}^3 . Compute the following quantities.

- (i) The time-t flow, ϕ_t , of the vector field X.
- (ii) The push forward map $(\phi_1)_*: T_{(x,y,z)}\mathbb{R}^3 \to T_{\phi_1(x,y,z)}\mathbb{R}^3$.
- (iii) The Lie bracket [X, Y].
- (iv) The exterior derivative $d\omega$.
- (b) (i) For a smooth vector field Y and a smooth k-form ω on a smooth manifold M define the Lie derivative $\mathcal{L}_{Y}\omega$
 - (ii) For Y and ω as in part (a), compute $\mathcal{L}_{Y}\omega$.

Problem 3 (30 points)

(i) Let W be a compact oriented manifold of dimension k+1 with nonempty boundary $\partial W = M$. Let $F: M \to N$ be a smooth map and ω a smooth **k-form on** N such that $d\omega = 0$. Prove that if F can be extended to a smooth map $\widetilde{F}: W \to N$, then

$$\int_M F^*\omega = 0.$$

(ii) For $S^1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$ consider the smooth map $F\colon S^1\to S^1$ defined by

$$F(x,y) = (-x, -y).$$

Prove that F cannot be extended to a smooth map $\widetilde{F}\colon B^2\to S^1$ where $B^2=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\}.$

 ${\bf Hint.}$ Consider part (i) and the one-form ω on S^1 defined as the restriction of

$$\left(\frac{-y}{x^2+y^2}\right)dx + \left(\frac{x}{x^2+y^2}\right)dy.$$