MATH 518 (formerly MATH 520) comprehensive exam August 2009 1. Let \mathbb{R}^2 have coordinates (u,v) and let \mathbb{R}^3 have coordinates (x,y,z). In \mathbb{R}^2 , let $U=(0,\pi)\times(0,2\pi)$, and let $f:\mathbb{R}^2\to\mathbb{R}^3$ be given by $$f(u,v) = (\sin(u)\cos(v), \sin(u)\sin(v), \cos(u))$$ (a) Compute $f^*(x)$, $f^*(y)$, $f^*(z)$, $f^*(dx)$, $f^*(dy)$ and $f^*(dz)$. (b) Consider the differential form $\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ on \mathbb{R}^3 . Compute $\int_{IJ} f^*(\omega).$ 2. Let M and N be compact oriented n-manifolds-without-boundary and ω an n-form on N such that $\int_{N} \omega = 1.$ Recall that the degree of a smooth map $f: M \to N$ can be defined as $$\deg(f) = \int_{M} f^{*}(\omega).$$ Prove that $\deg(f)$ depend only on the homotopy class of f; that is, if f is homotopic to g, then $\deg(f) = \deg(g)$. **3.** Let M be a smooth noncompact manifold-without-boundary and $K \subset M$ any compact subset. Prove that there exists a compact manifold with boundary N such that $K \subset N \subset M$. (Hint: you may assume the existence of a proper smooth function $f: M \to \mathbb{R}$).