1 Grassmannian

- 1. Give the definition of regular and rational maps. Define what it means for a variety X to be rational.
- 2. Prove that the Grassmannian $\mathbb{G}(k,n)$ is rational.
- 3. What is the dimension of $\mathbb{G}(k,n)$? Justify.

2 Segre embedding

- 1. Give the definition of the Segre embedding $\iota : \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$. Write down ι explicitly in terms of the homogeneous coordinates of the \mathbb{P}^1 factors.
- 2. Let $Y = \iota(\mathbb{P}^1 \times \mathbb{P}^1) \subset \mathbb{P}^3$ (so that we have an isomorphism $Y \xrightarrow{\sim} \mathbb{P}^1 \times \mathbb{P}^1$ which we also denote by ι). Give a homogeneous polynomial F on \mathbb{P}^3 so that Y = V(F).
- 3. Let $\iota^{-1}: Y \xrightarrow{\sim} \mathbb{P}^1 \times \mathbb{P}^1$ denote the inverse isomorphism. Then there is a natural morphism $f: Y \to \mathbb{P}^1$ given by $f = \pi_1 \circ \iota^{-1}$, where $\pi_1: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ is projection onto the first factor. Now forgetting the construction of Y by the Segre embedding and only using the description of Y as $V(F) \subset \mathbb{P}^3$, prove that f is a regular map.

3 Projections.

Let $p = (1,0,0) \in \mathbb{P}^2$. This question concerns the projection from p, which we write as a rational map $f: \mathbb{P}^2 - - \to \mathbb{P}^1$.

- 1. Give a formula for f in coordinates. What is the largest open subset $U \subset \mathbb{P}^2$ on which f is regular?
- 2. Let $\pi: X \to \mathbb{P}^2$ be the blowup of \mathbb{P}^2 at p = (1,0,0). Identify X with an explicit projective subvariety of $\mathbb{P}^2 \times \mathbb{P}^1$. What is $\pi^{-1}(U) \subset X$?
- 3. Show that $f \circ \pi|_{\pi^{-1}(U)} : \pi^{-1}(U) \to \mathbb{P}^1$ extends to a morphism $\tilde{f} : X \to \mathbb{P}^1$. What are the fibers of \tilde{f} ?
- 4. Use your answer to question (3) to prove that X is irreducible.

4 Smoothness

- 1. Give two definitions of a nonsingular point p of a variety X. First, define smoothness in terms of the local ring of X at p. Next, define smoothness in terms of the tangent space of X at p and dim(X). Finally, give a formula for the tangent space of X at p in terms of an affine neighborhood U of p in X and a represention of U as a closed subset $U = V(f_1, \ldots, f_k) \subset \mathbb{A}^N$.
- 2. For the surface $S = V(xy^2 zw^2) \subseteq \mathbb{P}^3$ find the singular locus.

3. For the smooth point p=(1:1:1:1) find the tangent space to the curve $V(xy^2-zw^2,x^3+y^3-z^3-w^3)$ as a linear subspace of \mathbb{P}^3 . Give your answer as $V(L_1,L_2)$ where L_i are homogeneous linear forms.

5 Normalization

- 1. Define what it means for an integral domain to be normal and for an affine variety to be normal.
- 2. The curve $V(zy^3-x^4)\subseteq \mathbb{P}^2$ is not normal. Find its normalization and justify your answer.