Math 511 Comp Exam

Problem 1. Let X be an irreducible variety in \mathbb{A}^n_k with k algebraically closed.

- (1) Give the definition of the coordinate ring A(X) of X.
- (2) Give the definition of the field of rational functions K(X) of X.
- (3) Define the dimension of X in terms of K(X) and k.
- (4) Define what it means for X to be normal.

Problem 2. Map \mathbb{P}^1 to \mathbb{P}^3 via

 $[s:t] \xrightarrow{\phi} [s^3:s^2t:st^2:t^3]$, with $[X_0:X_1:X_2:X_3]$ coordinates on \mathbb{P}^3 .

- (1) Find equations defining the ideal of the image of ϕ . (Hint: there are three of them; you need not prove they are everything)
- (2) Give the definition of a regular map. Prove that ϕ is regular.
- (3) Map \mathbb{P}^2 to \mathbb{P}^4 via $[s:t:u] \xrightarrow{\mu} [s^2:st:su:tu:t^2]$. Is μ a regular map? If not, why not?
- (4) Give the definition of a rational map. Is ϕ rational? Is μ rational?

Problem 3. Smoothness

- (1) Give two definitions of a nonsingular point p of a variety X. First, define smoothness in terms of the local ring at p. Next, define smoothness in terms of the tangent space at p, and dim(X).
- (2) For the curve $C = V(x^2y^2 + x^2z^2 + y^2z^2) \subseteq \mathbb{P}^2$, find the singular points (hint: work on a distinguished affine patch and use the symmetry. Remember the point has to lie on the curve!).
- (3) Recall that the tangent cone at a singular point q consists of lines thru q which are limiting positions of secant lines. Give the equation for the tangent cone to C at (0,0,1).

Problem 4.

- (1) Prove that the polynomial ring k[t] is its own normalization. [Hint: assume a rational function, as a fraction in lowest terms, satisfies a monic polynomial equation, and derive a contradiction unless the denominator is already a scalar.]
- (2) Use part (1) to prove that the normalization of the curve

$$Z(y^2 - x^3) \subset \mathbb{A}^2$$

is isomorphic to \mathbb{A}^1 .

Problem 5. Let $C = Z(y^4 - x^5) \subset \mathbb{A}^2$. Is the proper transform of this curve in the blow-up $\mathrm{Bl}_0 \mathbb{A}^2$ nonsingular? Justify your answer.