DEPARTMENT OF MATHEMATICS MATHEMATICS 501 COMPREHENSIVE EXAMINATION MAY 2010

Problem 1 (25 points) Let A be a commutative ring with 1 and let M be an A-module. M is called divisible if for all $a \neq 0 \in A$ the multiplication map $M \stackrel{a}{\to} M$ is surjective.

- **a.** Let A be an integral domain. Show that every injective module over A is divisible.
- **b.** Show that any divisible module over a PID is injective. Deduce that \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are both injective over \mathbb{Z} .

Problem 2 (25 points) Let $f: A \to B$ be a ring homomorphism of commutative rings. This makes B into an A-module, using f. Suppose B is A-flat.

- **a.** Let $I \subset J$ be two ideals of A. Prove that $J/I \otimes_A B \xrightarrow{\sim} JB/IB$, where JB = f(J)B, and IB = f(I)B).
- **b.** Moreover, suppose that B has the following property: if N is an A-module then $N \otimes_A B = 0$ implies that N = 0. Show then that for every ideal $I \subset A$ we have $f^{-1}(IB) = I$.

Problem 3 (25 points) Consider a category I with three objects and (besides the identities) morphisms given as follows:

- **a.** Let C be a category and $\mathcal{F}: I \to C$ a covariant functor. Explain what a limit of \mathcal{F} in C is.
- b. Show that if C = R-Mod, for some ring R, then the limit of a covariant functor $\mathcal{F} \colon I \to C$ as above always exists. Give an explicit module and morphisms that represents the limit. (Hint: it might be useful to think about the kernel of an appropriate morphism.)

See next page for the fourth problem!

Problem 4 (25 points) (Permutation representations). Let X be a finite set with an action of a finite group G. Let $\mathcal{F}(X)$ be the vector space (over the complex numbers \mathbb{C}) with basis $e_x, x \in X$, and define and action of G on $\mathcal{F}(X)$ by $g \cdot e_x = e_{gx}$. $\mathcal{F}(X)$ is called the permutation representation of X.

(1) Show that the character of the permutation representation counts the elements fixed by q:

$$\chi_{\mathcal{F}(X)}(g) = \#\{x \in X \mid gx = x\}$$

- (2) Consider the group S_3 of permutations of 3 letters. Let S_3 act on $V = \mathbb{C}^3$ by permuting the elements of a basis. Find the character of V. Is V irreducible?
- (3) Give the character table of S_3 , i.e., the values of the irreducible characters on all conjugacy classes. Explain.
- (4) Determine the decomposition of the permutation representation $V = \mathbb{C}^3$ over S_3 in irreducibles: write V as a direct sum $n_1V_1 \oplus n_2V_2 \oplus n_3V_3$, and find n_1, n_2, n_3 .