Math 501

Comprehensive Exam

(Answer all five questions)

- 1. Let R be a ring with an identity element.
 - (a) If M is any left R-module, prove that there is a free module F such that $M \simeq^R F/S$ for some submodule S of F.
 - (b) Prove that every left R-module M has a free R-resolution, i.e., an infinite exact sequence of left R-modules and R-module homomorphisms

$$\cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

in which each F_i is a free R-module.

- 2. Let R be a commutative ring with identity and let M, N be R-modules.
 - (a) If M can be generated as a module by n elements, where n is finite, prove that $\text{Hom}_R(M, N)$ is isomorphic with a submodule of a direct sum of n copies of N.
 - (b) If both the modules M and N have composition series (of finite length), prove that $\operatorname{Hom}_R(M,N)$ also has a composition series.

3.

(a) Let G be a finite group. If n_1, n_2, \ldots, n_k are the degrees of the irreducible representations of G over the complex field \mathbb{C} , prove that

$$|G| = n_1^2 + n_2^2 + \dots + n_k^2.$$

- (b) Let G be a group of order 3. Find three irreducible representations of G over \mathbb{C} and use the group algebra to show that the group has no further irreducible representations over \mathbb{C} .
- (c) With G as in 3(b), write $\mathbb{C}G$ as the sum of three ideals which give rise to the three irreducible representations of G.

4.

(a) Let SL_R , M_R , N_R be modules over rings R, S as shown. Prove that

$$L \otimes_R (M \oplus N) \simeq (L \otimes_R M) \oplus (L \otimes_R N),$$

where the isomorphism is of left S-modules.

(b) Simplify as far as possible

$$((\mathbb{R} \oplus \mathbb{Z}_6) \otimes (\mathbb{Z}_2 \oplus \mathbb{Z} \oplus \mathbb{Z}_8)) \otimes (\mathbb{Z}_{14} \oplus \mathbb{Z}),$$

where all tensor products are over $\mathbb Z$ and $\mathbb R$ is the additive group of real numbers.

5.

- (a) Use Jordan canonical form to prove that every square matrix over the complex field is similar to its transpose.
- (b) Use rational canonical form to find all possible similarity types of 4×4 matrix A over \mathbb{Q} , the rational field, which satisfy the equation $A^2 + A^4 = 0$.