DEPARTMENT OF MATHEMATICS MATHEMATICS 501 COMPREHENSIVE EXAMINATION 16 MAY 2008

Problem 1 (20 points) Determine necessary and sufficient conditions that a finitely generated abelian group A be semi-simple.

Problem 2 (20 points) Suppose G is a group. Show that there is a unique group homomorphism $\alpha: G \to A$ where A is abelian such that for any abelian group B, there is an isomorphism

(1)
$$\operatorname{Hom}(A, B) \to \operatorname{Hom}(G, B)$$

induced by α .

Problem 3 (20 points) Let m be an integer, $m \neq 0$. Consider the exact sequence

(2)
$$(E) 0 \longrightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \longrightarrow 0.$$

Let A be an abelian group.

• Determine T in the sequence

$$(3) 0 \longrightarrow T \longrightarrow \mathbb{Z} \otimes A \stackrel{m}{\longrightarrow} \mathbb{Z} \otimes A \longrightarrow (\mathbb{Z}/m\mathbb{Z}) \otimes A \longrightarrow 0.$$

so that the sequence is exact.

• Determine H in the sequence

$$(4) 0 \longrightarrow \operatorname{Hom}(\mathbb{Z}/m\mathbb{Z}, A) \longrightarrow \operatorname{Hom}(\mathbb{Z}, A) \xrightarrow{m} \operatorname{Hom}(\mathbb{Z}, A) \longrightarrow H \longrightarrow 0.$$

so that the sequence is exact.

Problem 4 (20 points) Let k be a field. Let q be an indeterminate over this field. The ring k[q] is the ring of polynomials in the indeterminate q and k(q) is the field of fractions of this polynomial ring.

- Show that $\operatorname{Hom}_{\mathbb{k}[q]}(\mathbb{k}(q), \mathbb{k}(q)) \equiv \mathbb{k}(q)$.
- Show that k(q) is a flat but not projective k[q]-module.
- Show that k(q)/k[q] is an injective k[q]-module.

Problem 5 (20 points) Suppose that p is a prime integer. Let \mathbb{F}_p be the field with p elements. Let K be a finite field extension of \mathbb{F}_p of degree n. Let $F: K \to K$ be the Frobenius map defined by $F(x) = x^p$.

- Show that F is a linear tranformation of the \mathbb{F}_p vector space K.
- Show that $F^n = I$, the identity map on K.
- In case p does not divide n, find the Jordan Normal Form for F.