DEPARTMENT OF MATHEMATICS MATHEMATICS 501 COMPREHENSIVE EXAMINATION MAY 2007

Problem 1 Let R be a ring.

- a. (10 points) Define when an R-module M is Artinian and when it is Noetherian.
- b. (10 points) Let $R = \mathbb{Z}$, the ring of integers. Show that every Noetherian \mathbb{Z} -module is Artinian, or give a counter example.
- c. (10 points) Let M be an R-module and $N \subset M$ be a submodule. Show that if both N and M/N are Artinian then M is Artinian.

Problem 2

- a. (10 points) Let G be an Abelian group of order mn, where m and n are arbitrary positive integers. Show that there is a subgroup and a quotient group of G of order m.
- **b.** (10 points) Let $R = \mathbb{Z}/45\mathbb{Z}$. Find all finitely-generated R-modules (list without repetitions).

Problem 3 Let M and N be \mathbb{Z} -modules. In this problem all \otimes 's and Hom's are over \mathbb{Z} .

- **a.** (10 points) Does M being projective imply $M \otimes N$ being projective? Justify.
- **b.** (10 points) Does M being injective imply $M \otimes N$ being injective? Justify.
- c. (10 points) Simplify $\operatorname{Hom}(((\mathbb{Z}/6\mathbb{Z}) \oplus \mathbb{Q}) \otimes ((\mathbb{Z}/9\mathbb{Z}) \oplus 2\mathbb{Z}), \mathbb{R} \oplus (\mathbb{Z}/9\mathbb{Z})).$

Problem 4 Let $\mathbb{C}[t]$ be the ring of polynomials in t with complex coefficients. A $\mathbb{C}[t]$ -module can be described by giving a vector space V (a \mathbb{C} -module) together with a linear operator in V (the t-action).

- a. (10 points) Find all simple $\mathbb{C}[t]$ -modules.
- b. (10 points) Find a Jordan-Hölder filtration of the $\mathbb{C}[t]$ -module $\left(\mathbb{C}^3, t \mapsto \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}\right)$.