Department of Mathematics 501 Comprehensive Exam August 30, 2008

- 1. Let A be a commutative ring with 1 and let M be an A-module.
 - a. (5 points) Define what it means to say that M is a cyclic module, a simple module, a semisimple module, a projective module, an injective module.
 - **b.** (10 points) When $A = \mathbb{Z}$ and $M = \mathbb{Z}/4\mathbb{Z}$ explain whether of not M is a cyclic module, a simple module, a semisimple module, a projective module, an injective module.
 - c. (10 points) When $A = \mathbb{Z}$ and $M = \mathbb{Q}$ explain whether or not M is a cyclic module, a simple module, a semisimple module, a projective module, an injective module.
- ${f 2}$. Let A be a commutative ring with 1 and let M be an A-module..
 - a. (5 points) Define what it means for the module M to be a Noetherian module, an Artinian module, a finitely generated module.
 - **b.** (10 points) Let M be a Noetherian A-module and $\alpha: M \to M$ a module homomorphism. Prove that if u is surjective then u is an isomorphism.
 - c. (10 points) Prove that if M and N are finitely generated A modules then $M \otimes_A N$ is again a finitely generated A-module.
- **3.** Let G be a finite abelian group.
 - a. (15 points) Show that the rational group algebra $\mathbb{Q}[G]$ is a product of fields.
 - b. (10 points) In the cases $G = \mathbb{Z}/2\mathbb{Z}$ and $G = \mathbb{Z}/3\mathbb{Z}$ identify the fields that occur in $\mathbb{Q}[G]$.
- 4. Let $\alpha: V \to V$ be a linear transformation of a finite vector space over a field F.
 - a. (10 points) Prove that α is diagonalizable (there exists a basis of V such that the associated matrix of α is a diagonal matrix) if and only if the minimal polynomial of α splits into linear factors (in F) with no repeated roots.
 - b. (15 points) Prove that if α is diagonalizable then V is a semi-simple F[T] module (where the action is induced via α in the customary manner, given $f \in F[T]$ and $v \in V$, $f * v = f(\alpha)(v)$).