DEPARTMENT OF MATHEMATICS MATHEMATICS 501 COMPREHENSIVE EXAMINATION AUGUST 2007

Problem 1 Let R be a ring.

- a. (10 points) Define when an R-module M is simple. When is R itself simple?
- b. (10 points) Suppose R is a matrix ring over a division ring Δ : $R = \operatorname{Mat}_{n \times n}(\Delta)$. Show that R is simple. Calculate the center Z(R) of R.
- c. (10 points) Still let $R = \operatorname{Mat}_{n \times n}(\Delta)$. Describe all simple R-modules. Justify.

Problem 2 Let $0 \to A \to B \to C \to 0$ be a short exact sequence of modules over some ring. True or false (if true – prove, if false – provide a counterexample):

- a. (10 points) A and C are Noetherian \Rightarrow B is Noetherian;
- **b.** (10 points) A and C are projective \Rightarrow B is projective;
- c. (10 points) A and C are semisimple \Rightarrow B is semisimple.

Problem 3 (10 points) Write \mathbb{Z}^3/L , where $L = \mathbb{Z}(3,2,1) + \mathbb{Z}(2,-2,2)$, as a direct sum of cyclic abelian groups.

Problem 4 Let \mathbb{R}, \mathbb{C} be the fields of real and complex numbers. Simplify:

- a. (10 points) $\mathbb{R}[x] \otimes_{\mathbb{R}} \mathbb{R}[x]$
- **b.** (10 points) $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[x]$
- c. (10 points) $\left(\mathbb{R}[x]/(x^2-1)\right) \otimes_{\mathbb{R}[x]} \left(\mathbb{R}[x]/(x^3-1)\right)$