MATH 500 — May 2018

Five problems, 20 points each. Maximum 100 points.

Justify all your answers!

- 1. Let P be a Sylow p-subgroup of a finite group G and let N be a normal subgroup of G, such that $P \cap N \neq \{e\}$. Prove that $P \cap N$ is a Sylow p-subgroup of N.
- 2. Let S_5 be the symmetric group in 5 elements and let $\phi: S_5 \to G$ be a group homomorphism. Classify the image $\phi(S_5)$, i.e., list all the possibilities for $\phi(S_5)$ up to isomorphism.
- 3. Let $T: \mathbb{Q}^4 \to \mathbb{Q}^4$ be the \mathbb{Q} -linear transformation which relative to some basis is represented by the matrix

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & -2 & 0 & 1 \\ -2 & 0 & -1 & -2 \end{array}\right).$$

Find the rational canonical form for T.

4. Let $\langle (11, 13) \rangle$ be the subgroup of $\mathbb{Z} \oplus \mathbb{Z}$ generated by the element (11, 13). Show that the quotient group

$$(\mathbb{Z} \oplus \mathbb{Z})/\langle (11,13)\rangle$$

is torsion free.

- 5. (a) Find the Galois group of the polynomial $p(x) = x^3 10$ over the field $K = \mathbb{Q}(\sqrt{2})$.
 - (b) Let $q(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of prime degree $p \geq 2$. Show that if q(x) has exactly two non-real roots (i.e., two complex roots) then the Galois group of q(x) is isomorphic to S_p .