MATH 500 — MAY 2017

Five problems, 20 points each. Maximum 100 points.

Justify all your answers!

- 1. (a) Let G be a group of order 2n (n > 0). Show that G has at least one element of order 2.
 - (b) Consider the action of $\mathbb{Z}_2 \cong (\{1, -1\}, \times)$ on S_4 by automorphisms, where -1 acts by conjugation by the transposition (1 2). Is the semi-direct product $\mathbb{Z}_2 \ltimes S_4$ a nilpotent group? Solvable?
- 2. (a) Give an example of a finite field of order 27.
 - (b) Suppose a commutative ring R with identity has order 27. List all possible values of the characteristic of R, and give examples to show that all the values you list are attained.
- 3. Let $\mathbb{R}^{\infty} = \bigoplus_{k=1}^{+\infty} \mathbb{R}$ (direct sum of \mathbb{R} -modules) and let $R = \operatorname{End}(\mathbb{R}^{\infty})$ be the ring of all \mathbb{R} -linear transformations from \mathbb{R}^{∞} to itself. Show that R is isomorphic to $R \oplus R$ as a left R-module (so R, viewed as a left R-module, has a basis with 2 elements!).
- 4. Given an example of an integral domain *D*, where every irreducible element is prime, and which admits an infinite chain of ascending principal ideals:

$$\langle d_1 \rangle \subsetneq \langle d_2 \rangle \subsetneq \langle d_3 \rangle \subsetneq \cdots \subsetneq \langle d_n \rangle \subsetneq \cdots$$

What can you say about prime factorizations in this domain?

5. Consider the extension $L = \mathbb{Q}(\sqrt[3]{5}, i)$ of \mathbb{Q} . Find all subfields $\mathbb{Q} \subsetneq M \subsetneq L$ which are normal extensions of \mathbb{Q} .