MATH 500 COMP EXAM - MAY 2019

Five problems, 20 points each. Maximum 100 points.

- (1) (a) Let p be the smallest prime dividing the order of a finite group G. If H is a subgroup of G of index p, prove that H is normal in G.
 - (b) Show that any group of order 77 is cyclic.

- (2) Let q be a prime power and let \mathbb{F}_q be a finite field with q elements. Let $\mathrm{GL}_2(\mathbb{F}_p)$ be the (finite) group of invertible 2×2 matrices with coefficients in \mathbb{F}_p .
 - (a) Show that there is a group homomorphism $\operatorname{GL}_2(\mathbb{F}_q) \to S_{q+1}$ with kernel equal to the subgroup of scalar matrices $Z = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \mid a \in \mathbb{F}_q, \ a \neq 0 \right\}$. (Hint: Construct an action of $\operatorname{GL}_2(\mathbb{F}_q)$ on the set of one-dimensional subspaces of \mathbb{F}_q^2 .)
 - (b) Use part (a) to prove that $GL_2(\mathbb{F}_3)$ is solvable and that $GL_2(\mathbb{F}_4)$ is not solvable. You may use without proof that $GL_2(\mathbb{F}_q)$ has cardinality $(q^2-1)(q^2-q)$.
- (3) Let M be the quotient abelian group \mathbb{Z}^4/A , where A is the subgroup of \mathbb{Z}^4 generated by the elements (1,1,1,1),(0,1,1,0), and (1,2,-1,0).
 - (a) Determine the structure of M.
 - (b) How many non-trivial homomorphisms are there $M \to \mathbb{Z}/5$?
- (4) Let k be a field, and consider the element $D=\det\begin{bmatrix} x&y\\z&w \end{bmatrix}$ in the polynomial ring k[x,y,z,w].
 - (a) Show that D is irreducible.
 - (b) Show that k[x, y, z, w]/D is not a UFD.
- (5) Let K be the splitting field of $x^6 + 3$ over \mathbb{Q} .
 - (a) Compute the Galois group of K over \mathbb{Q} .
 - (b) How many subfields of K are there, which have degree 3 over \mathbb{Q} ?