Math 500 Comprehensive Examination May 2007

(Answer all five questions: each question is worth 20pts.)

1.

- (a) Let A and B be normal subgroups of a group G such that $A \cap B = 1$. Prove that ab = ba for all $a \in A$, $b \in B$.
- (b) Let G be a group such that $G = S_1 \times S_2 \times \cdots \times S_k$, where the S_i are non-abelian simple groups. Prove that G has trivial center.
- (c) Let G be a group as in (b). Let $N \triangleleft G$ and assume that $N \cap S_i = 1$ for all i. Prove that N = 1.
- (d) Let G be as in (b) and suppose that that N is a non-trivial normal subgroup of G. Prove that N is the direct product of certain of the S_i 's.

2.

- (a) Let M and N be normal subgroups of a group G such that $M \cap N = 1$. If G/M and G/N are solvable, show that G is solvable.
 - (b) Prove that every group of order 605 is solvable.

3.

- (a) Let R be a euclidean domain, i.e., an integral domain for which the division algorithm is valid. Prove that R is a principal ideal domain.
- (b) Let R be an integral domain such that the polynomial ring R[x] is a principal ideal domain. Prove that R must be a field.
- **4.** Let E denote the field extension $\mathbb{Q}(2^{\frac{1}{2}}, 2^{\frac{1}{3}})$.
 - (a) Find $(E:\mathbb{Q})$.
 - (b) Prove that $E = \mathbb{Q}(2^{\frac{1}{2}} + 2^{\frac{1}{3}})$.
 - (c) Let S be the smallest field containing E which is normal over \mathbb{Q} . Find (S:E) and hence $(S:\mathbb{Q})$.

5.

(a) Describe the standard method for showing that an irreducible quintic polynomial over \mathbb{Q} is not solvable by radicals and apply it to the polynomial $x^5 - 4x + 2$.

(b) Let E be a Galois extension of a field F and let $G = \operatorname{Gal}(E/F)$. Assume that p^m divides |G| where p is a prime. Prove that there is a subfield K of E containing F such that $(E:K) = p^m$.

(c) Show that in the situation of (b) there need not be a subfield L of E such that $(L:F)=p^m$.