## MATH 500 — January 2018

Five problems, 20 points each. Maximum 100 points.

## Justify all your answers!

- 1. Let P be a Sylow p-subgroup of a finite group G and let  $N_G(P) \subseteq H \subseteq G$  be a subgroup, where  $N_G(P)$  denotes the normalizer of P. Prove that  $N_G(H) = H$ .
- 2. Must a group of order  $3 \cdot 3 \cdot 3 \cdot 5$  be nilpotent? Justify your answer.
- 3. Let V be a vector space over the field K. Assume that V is isomorphic to the direct sum of cyclic K[x]-modules

$$K[x]/(x+1)^2 \oplus K[x]/(x^2-1) \oplus K[x]/(x-1)^2$$
.

- (a) Determine the invariant factors and elementary divisors for V.
- (b) Give the rational canonical form for the matrix that describes mulitplication by x on V, i.e. for the linear map  $V \longrightarrow V$  that maps  $v \mapsto xv$ .
- 4. Let F and K be fields with  $F \subset K$ .
  - (a) State what it means for an element  $x \in K$  to be algebraic over F.
  - (b) Using the definition in (a) prove that if  $x \in K$  and  $y \in K$  are algebraic over F then both x + y and xy are algebraic over F.
- 5. Let  $f(x) = x^4 + 6x^2 + 1 \in \mathbb{Q}[x]$ .
  - (a) Compute, with proof, the Galois group of the polynomial f(x). You may use that the polynomial has discriminant  $\Delta = 2^{14}$  and cubic resolvent  $g(x) = x^3 12x^2 + 32x$ .
  - (b) Let K be the splitting field over  $\mathbb{Q}$  of the polynomial f(x). Use the Galois group obtained under (a) to determine the number of subfields  $F \subset K$  with  $[F:\mathbb{Q}]=2$ .

Note: If you were not able to solve (a) you may assume that the Galois group is  $G \simeq A_4 \subset S_4$ .