MATH 500 — JANUARY 2017

Five problems, 20 points each. Maximum 100 points.

Justify all your answers!

- 1. (a) Suppose G is a group with an abelian normal subgroup N and abelian quotient group G/N. Is G an abelian group?
 - (b) Suppose G has order p^3 for a prime p. Is G a nilpotent group?
- 2. (a) Prove that every finite field has order a power of a prime p.
 - (b) Give an example of a commutative ring R of prime power order p^n which is not a field.
- 3. Consider the action of the group $G = GL_2(\mathbb{C})$ (2 × 2 invertible matrices with complex coefficients) on the set $M_2(\mathbb{C})$ (all 2 × 2 matrices with complex coefficients) defined by $g \cdot M = gMg^{-1}$. For the matrix

$$M_{ab} = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$$

describe (in terms of $a, b \in \mathbb{C}$) its stabilizer subgroup

$$G_{M_{ab}} = \{ g \in GL_2(\mathbb{C}) \mid gM_{ab}g^{-1} = M_{ab} \}.$$

- 4. Let D be a unique factorization domain. If $D' \subset D$ is a subring containing 1 is it true that D' is itself a unique factorization domain?
- 5. Let $p(x) \in \mathbb{Q}[x]$ be a polynomial of degree 5, with splitting field E and Galois group isomorphic to the alternating group A_5 .
 - (a) Is p(x) irreducible over \mathbb{Q} ?
 - (b) Find $[E:\mathbb{Q}]$.
 - (c) How many subfields of E have degree 12 over \mathbb{Q} ?
 - (d) Which subfields of E are normal over \mathbb{Q} ?