MATH 500 Comprehensive Exam. January 2013.

(1) Let G be a finite group of order |G|, and let Z(G) denote the center of G. Prove the following.

(a) If G/Z(G) is cyclic, then G is abelian.

(b) If |G| = pq, where p and q are primes, then either $Z(G) = \{1\}$ or G is abelian.

(2) Show that a group of order $20 \cdot 23^r$, where r is a positive integer, is solvable.

(3) Let R be a commutative ring and let M be an R-module. M is called *projective* if there exists an R-module N such that the R-module $M \oplus N$ is free.

Let \mathbb{Z} be the ring of integers, and \mathbb{Q} be the field of rational numbers viewed as a \mathbb{Z} -module. Is \mathbb{Q} a projective \mathbb{Z} -module? Justify your answer.

- (4) (a) Let k be a field and let U be a finite multiplicative subgroup of k. Prove that U is cyclic.
 - (b) Let k^* denote the set of units in k. Assume that k is a finite field. Show that k^* is a cyclic group.
- (5) (a) Let k be a field and let $f(x) \in k[x]$ be such that its derivative f'(x) is not the null polynomial. Prove that the following are equivalent.

(i) f(x) has a multiple root in the algebraic closure of k.

(ii) f(x) and f'(x) have a common root in the algebraic closure of k.

(iii) The greatest common divisor of f(x) and f'(x) in k[x] is of degree > 1.

(b) A polynomial over k is called *separable* if its roots in the algebraic closure of k are distinct. Prove the following statements.

(i) An irreducible polynomial over a field k of characteristic 0 is separable.

- (ii) Let k be a field of characteristic p > 0 and f(x) be an irreducible polynomial in k[x]. Suppose that f(x) cannot be expressed as a polynomial in x^p with coefficients in k. Then f(x) is separable.
- (c) Let p be a prime number. Show that the polymonial $f(x) = x^{p-1} + \ldots + x + 1$ is irreducible over \mathbb{Q} .

(6) Consider the polynomial $f(x) = x^4 - 2$ over \mathbb{Q} .

(a) Find the splitting field K of f(x) and its degree over \mathbb{Q} .

(b) Let G be the Galois group of the field extension $\mathbb{Q} \subseteq K$. Find the generators and relators for G. Is it isomorphic to the dihedral group D_8 ? Justify your answer.