MATH 500 — JANUARY 2012

Five problems, 20 points each. Maximum 100 points.

- 1. (a) Show that every group of order 77 is Abelian.
- (b) Show that every group of order 135 is nilpotent.
- 2. Let G be a finite group, N a normal subgroup of G, p a prime number, and P a p-Sylow subgroup of N. Recall that

$$N_G(P) := \{ g \in G : gPg^{-1} = P \}$$

is the normalizer of P in G.

- (a) Define an action of G on the set of p-Sylow subgroups of N.
- (b) Show that $G = N_G(P)N$.
- 3. Let R be a PID. Using just the definition of "PID", prove:
- (a) R has no infinite strictly ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$$
.

- (b) Every nonzero prime ideal I of R is a maximal ideal of R.
- (c) Give an example of a nonzero prime ideal of $\mathbb{Z}[x]$ that is not a maximal ideal of $\mathbb{Z}[x]$.
- 4. Let R and S be commutative rings with $1 \neq 0$ and let $f: R \longrightarrow S$ be a ring homomorphism.
- (a) Prove that if Q is a prime ideal of S, then its preimage $f^{-1}(Q)$ is a prime ideal of R.
- (b) Give an example where the preimage of a maximal ideal of S is not a maximal ideal of R.
- (c) Give an example where the image f(P) of a prime ideal P of R is not a prime ideal of S.

- 5. Consider the field \mathbb{F}_2 of two elements.
- (a) Show that the polynomial $x^3 + x + 1 \in \mathbb{F}_2[x]$ is irreducible.
- (b) Show that $x^3 + x + 1$ has a root $\alpha \in \mathbb{F}_8$ and that \mathbb{F}_8 is a splitting field of $x^3 + x + 1$ over \mathbb{F}_2 .
- (c) Find the matrix of the Frobenius automorphism of \mathbb{F}_8 with respect to the basis $1, \alpha, \alpha^2$ (and \mathbb{F}_8 as vector space over \mathbb{F}_2).