COMPREHENSIVE EXAM, MATH 500, JANUARY 20, 2010.

1. (a) Let P be a Sylow p-subgroup of a finite group G and let $N_G(P) \leq H \leq G$ where $N_G(P)$ denotes the normalizer. Prove that $N_G(H) = H$.

(b) Show that there are no simple groups of order 616.

- 2. Let G be a group with a composition series of finite length, l(G), and let $N \triangleleft G$.
 - (a) Show that N has a composition series.
 - (b) Show that G/N has a composition series.
 - (c) Prove that l(G) = l(N) + l(G/N).
- 3. Let E be the field extension $\mathbb{Q}(\sqrt{3}-\sqrt{2})$, where \mathbb{Q} is the rational field.
 - (a) Prove that $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - (b) Find $(E:\mathbb{Q})$.
 - (c) Find the irreducible polynomial of $\sqrt{3} \sqrt{2}$.
 - (d) If K is a field such that $\mathbb{Q} \leq K \leq E$, prove that K is normal over \mathbb{Q} .
- 4. (a) Prove that for any commutative ring R and a proper ideal I in R, there exists a maximal ideal in R containing I.
 - (b) Prove that if J is a maximal ideal in a commutative ring R, then the quotient R/J is a field.