COMPREHENSIVE EXAM, MATHEMATICS 500 SATURDAY JANUARY 26TH, 2008

Problem 1.

a. (10 points) Is there a simple group of order 2008?

b. (10 points) Is there a non-abelian group of order 2008? Justify. Note: the prime factorization of 2008 is $2008 = 2^3 \cdot 251$.

Problem 2.

a. (10 points) Let \mathbb{F}_5 be the field with 5 elements and $GL(2, \mathbb{F}_5)$ the group of invertible 2×2 matrices with coefficients in \mathbb{F}_5 . Find the order of $GL(2, \mathbb{F}_5)$.

b. (10 points) Find the number of matrices conjugate to $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ in $GL(2, \mathbb{F}_5)$.

Problem 3.

a. (10 points) Factor $p(x) = x^{11} - 1$ into a product of irreducible polynomials in $\mathbb{Q}[x]$. Show that your factors are, in fact, irreducible.

b. (10 points) Now consider $p(x) = x^{11} - 1$ as an element of $\mathbb{R}[x]$. How many maximal ideals does $\mathbb{R}[x]/(x^{11} - 1)$ have?

Problem 4. Consider the ring $E = \mathbb{Q}[\sqrt[3]{2}] = \mathbb{Q}[x]/(x^3 - 2)$.

- a. (10 points) Show that E is a field.
- b. (10 points) Is E Galois over \mathbb{Q} ?

c. (10 points) Let F be the smallest Galois extension of \mathbb{Q} containing E (so F = E if the answer to b. is positive). Find the degree $[F : \mathbb{Q}]$.

d. (10 points) How many subfields does F have?